

IDENTIFICACION DE MACIZOS ROCOSOS ALTERADOS, SU APORTE EN EL CONTROL DEL RIESGO GEOTÉCNICO -SEGURIDAD Y LA CONTINUIDAD DEL NEGOCIO MINERO

CONSTRUYENDO JUNTOS UN PERÚ MEJOR

Presentación:

MSc. Gian Ticona

Magister en Geotecnia con más de 15 años de laburo en el sector minero, sólida experiencia en Geotecnia, Hidrología e Hidrogeología para Tajos, Depósitos de Desmonte, Presas de Relaves Operativas y en Cierre y Proyectos.

Mail: Gian.ticonaj@qumbrecs.com

Contenido:

INTRODUCCIÓN

MARCO TEÓRICO

METODOLOGÍA

ESTABILIDAD DE TALUDES EN MACIZOS ROCOSOS ALTERADOS

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

CONCLUSIONES Y RECOMENDACIONES

ANTECEDENTES

Deslizamiento en la Mina Bingham Canyon, Estados Unidos – Mayo 2021

Deslizamiento en Mina Gamsberg Sur Africa– Nov 2020

Derrumbe en Mina Las Cruces España – Ene 2019

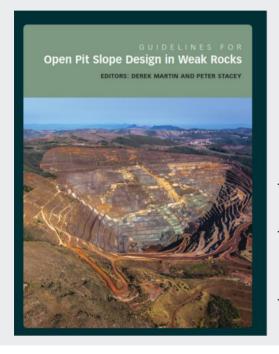
FACTORES QUE APORTAN EN UNA INESTABILIDAD GEOTECNICA

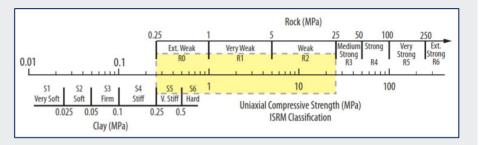
Presencia de Agua (Subterráneo y superficial).

Mala calidad del macizo rocoso.

Información estructural y alteraciones no actualizada.

Voladuras no controladas.


No cumplimiento de diseños de minado.



GUÍAS Y PUBLICACIONES

- 2018. "Guidelines for Open Pit Slope Design in Weak Rock" –
 Derek Martin and Peter Stacey.
- 2013. "Discussion on how to classify and estimate strength of weak rock masses – L. Castro (Golder), J. Carvalho (Golder), G. Sá (Vale).
- 2011. "Errores en la aplicación de las clasificaciones Geomecánicas y su corrección" Profesor Richard Bieniawski

CLASIFICACIÓN GEOMECÁNICA RMR BIENIAWSKI

Resistenca de	Indice de carga puntual	>8 Mpa			1 - 2 Mpa	Para estos rangos bajo es preferible utilizar la pruebas de UCS		lizar las
inalterada	Resistencia a la compresión					10 - 25	3 - 10	1 - 3
	uniaxial	>200 Mpa	100 - 200 Mpa	50 - 100 Mpa	25 - 50Mpa	Мра	Mpa	Mpa
	ración	15	12	7	4	2	1	0
Calidad de tes (RQD)	tigo perforado	90 - 100%	75 - 90%	50 -75%	25 - 50%		< 25%	
Valo	ración	20	17	13	8		3	
Espaciamiento	de fracturas	>3 m	1 - 3 m	0.3 - 1 m	50 - 300 mm		< 50 mm	ı
Valo	ración	30	25	20	10		5	
Condición de juntas		Superficie muy rugosas Sin continuidad Sin separación Paredes de roca	Superficies algo rugosas Separación < 1mm Paredes de roca	Superficies algo rugosas Separación < 1mm	Superficies pulidas o relleno < 5 mm o juntas	mm		as > 5
	.,	dura 25	dura 20	Paredes de roca	abiertas 1 - 5 mm	Fisuras continuas 0		
Valoración Cantidad de Infiltración, por 10 m de Iongitud de				12 < 25 lt/min	25 - 125 lt/min	> 125 lt/min		in
Agua Subterranea	Ratio: presión del agua en las juntas / esfuerzo principal mayor		0	0.0 - 0.2	0.2 -0.5	> 0.5		
	Condiciones generales	Totalme	ente seco	Solo húmedo	Ligera presión de agua	Serios Problemas de agua		nas de
Valo	ración	1	.0	7	4		0	

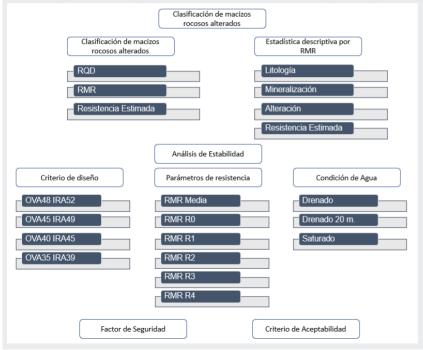
$$RMR = V (UCS) + V (RQD) + V (S) + V (CD) + V (CA)$$

- V (UCS) Resistencia de la roca
- V (RQD) Rock quality designation
- V(S) Espaciamiento de discontinuidades
- V (CD) Condición de discontinuidades
- V (CA) Condiciones hidrológicas

RMR Rating	Clase	Calidad Macizo Rocoso
81 - 100		Muy Buena
61 - 80	II	Buena
41 - 60	III	Regular
21 - 40	IV	Mala
< 20	V	Muy Mala

CLASIFICACIÓN DE MACIZOS ROCOSOS ALTERADOS

Grado	Término	Identificación en campo	Ejemplos	Schmidt	Is (Mpa)	UCS (Mpa)
R0	Extremadamente débil	Puede ser marcada por la uña	Panizo de las fallas	*	**	0.25-1
R1	Muy débil	Se desmenuza con golpes	Roca alterada e			0.23-1
KI	iviuy debii	firmes, con la punta del				
		martillo de geólogo y	intemperizada			
		puede ser arañada por				
		una navaja		*	**	1 - 5
R2	Débil	Puede ser raspada con	Tiza, rocas salinas y			1 - 3
1\2	Debii	dificultad por una navaja,	potasio			
		golpeando firmemente con	potasio			
		la punta del martillo de				
		geólogo se logra una marca				
		poca profunda		< 20	**	5 - 25
R3	Medianamente	No puede ser raspada por	Carbón, concreto,	\ 20		3 - 23
I/O	fuerte	una navaja, pero puede ser	esquistos, arcillas,			
	luerte	fracturada con un golpe	nizarras			
		firme del martillo de	pizarras			
				20 - 30	1 - 2	25-50
R4	Fuerte	geólogo Se requiere mas de un golpe	Caliza, mármol, arenisca,	20 - 30	1 - 2	25-50
K4	ruerte	del martillo de geólogo para				
		ser fracturada	esquistos	30 - 45	2 - 4	50 -100
R5	Muy fuerte		Anfibalita avanicas	30 - 45	2 - 4	50 -100
Ka	iviuy luerte	Se requiere muchos golpes	Anfibolita, arenisca,			
		con el martillo de geólogo para ser fracturada	basalto, gabro, gneis,			
		para ser fracturada	granodiorita, peridotitas,	45 60	4 40	400 250
DC	E. A d	Dd	riolita, tufo	45 - 60	4 - 10	100 -250
R6		Puede ser apenas arañadas	Basalto fresco, chert,			
	fuerte	con el martillo de geólogo	diabasa, gneis, granito,		. 10	. 250
			cuarcita	> 60	>10	>250



DISEÑO DE LA INVESTIGACIÓN

Revisión de literatura y estudio anteriores.

Análisis de la base de datos geomecánica.

Clasificación geomecánica RMR y resistencia estimada ISRM.

Análisis de ubicación espacial de los parámetros geomecánicos.

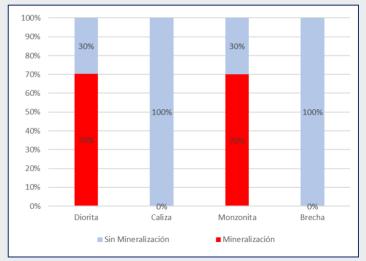
Análisis estadístico de los parámetros geomecánicos.

Definición de unidades geotécnicas.

Construcción de modelos geotécnicos con escenarios de diseño y condiciones hidrogeológicas.

Análisis de estabilidad de macizos rocosos alterados



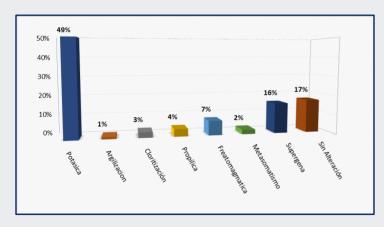

VARIABLES UTILIZADAS

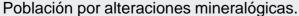
Variables utilizadas para el análisis de estabilidad de macizos rocosos alterados son el RMR, carga puntual, compresión uniaxial, tracción indirecta, corte directo (estructura), densidad, litología,

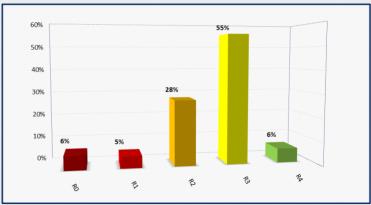
mineralización, alteraciones y resistencia estimada.

Población por unidades litológicas.

Contenido de mineral por unidades litológicas.

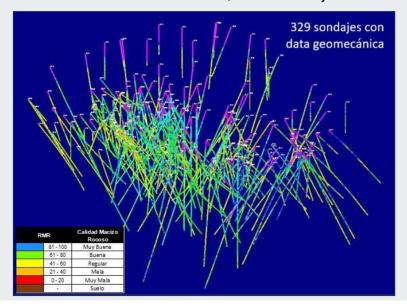





VARIABLES UTILIZADAS

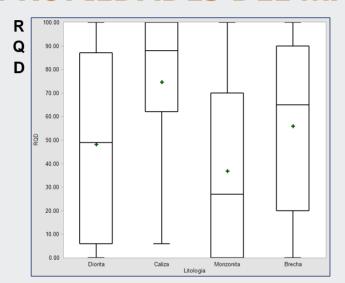
Alteración potásica con mayor porcentaje, la cual está directamente asociada a la mineralización y se da en las rocas intrusivas como son la diorita y monzonita.

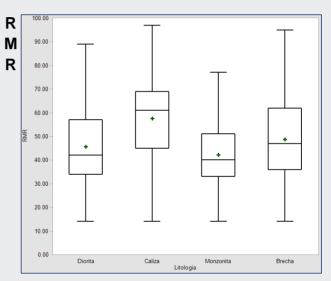
El 28% del macizo rocoso corresponde a un macizo rocoso alterado.


Población por resistencia estimada.

INVESTIGACIONES GEOTÉCNICAS

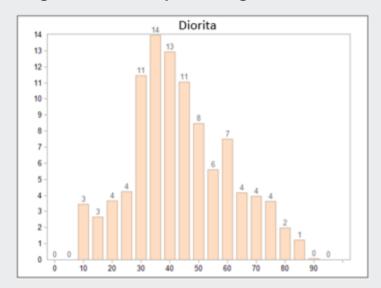
Información geomecánica de 329 sondajes, que conforman una base de datos robusta para los análisis estadísticos de caracterización, estos sondajes alcanzan un metraje total de 120,371 metros.

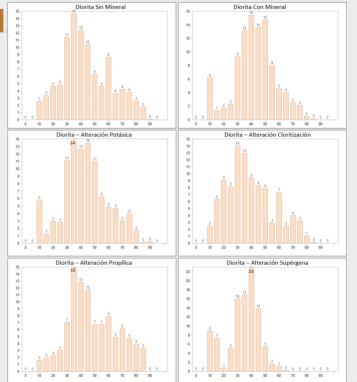



	REGISTRO DE LOGUEO GEOTÉCNICO PARA TESTIGOS DE ROCA												
		Fecha:			Geotécnico:			Inclinación:			Ноја:		le
		Taladro:			Proyecto:			Azimut:			Ø de Perfora	ición	
Intervalo	/Corrida	Recuperación	Grado de Fracturamiento Material Rocoso Condición de Discontinuida				iscontinuida	des					
Desde:	Hasta:	Longitud Recuperada (m)	∑ Frag's>10 cm (m)	N° de Frac. Naturales	Cód. Litolog.	Resist. Estimada (ISRM)	Presen. Agua (ISRM)	Tipo de estruct.	Abertura (mm.)	Rugosidad (ISRM)	Grado Intemp. (ISRM)	Tipo de Relleno	Espesor Relleno (mm)

PROPIEDADES DEL MACIZO ROCOSO

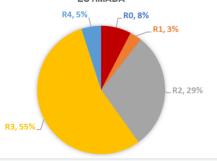
Litologia	Min	Max	Media	1er Q	Mediana	3rd Q	Des Std
Diorita	0	100	48.2	6	49	87	38.2
Caliza	0	100	74.7	62	88	100	30.9
Monzonita	0	100	36.8	0	27	70	36.2
Brecha	0	100	55.9	20	65	90	36.8

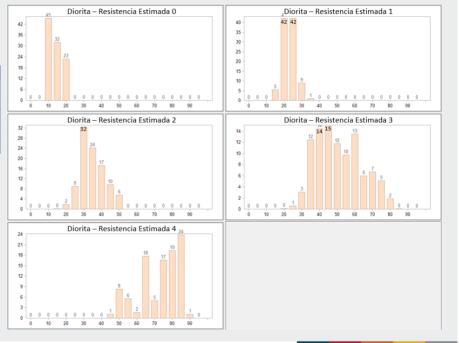

Litologia	Min	Max	Media	1er Q	Mediana	3rd Q	Des Std
Diorita	14	92	45.7	34	42	57	17.3
Caliza	14	97	57.6	45	61	69	17
Monzonita	14	95	42.3	33	40	51	15.2
Brecha	14	95	48.7	36	47	62	16.8



ANÁLISIS DE HISTOGRAM

Histogramas de RMR por Litología

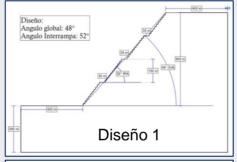


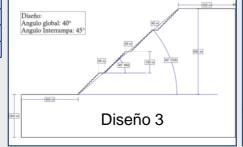

ANÁLISIS DE HISTOGRAMAS

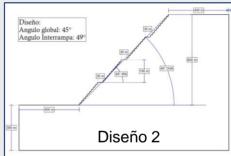
Histogramas de RMR por Resistencia Estimada Litología: Diorita

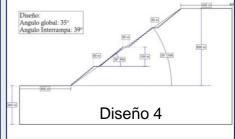
Resistencia Estimada	Min	Max	Media	1er Q	Mediana	3rd Q	Des Std
R0	14	22	17.1	14	17	19	3.2
R1	19	39	25.7	22	25	29	3.7
R2	18	53	35.9	31	35	40	6.6
R3	24	89	53.4	42	51	62	13.5
R4	45	92	75	67	77	84	11.6

DIORITA - POBLACIÓN POR RESISTENCIA ESTIMADA

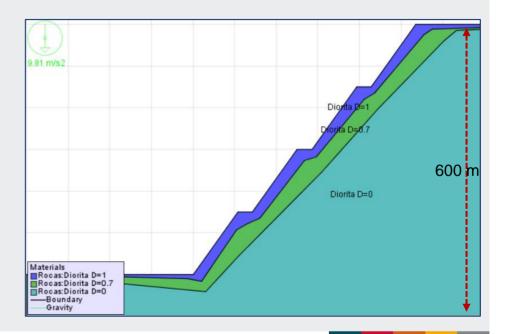







CRITERIOS DE DISEÑO ANALIZADOS

Parametros	Diseño 1	Diseño 2	Diseño 3	Diseño 4
Altura Total (m)	600	600	600	600
OVA (°)	48.2	45.3	40.5	35
Altura Interampa (m)	150	150	150	150
IRA (°)	52.5	49.2	45	39
Ancho Rampa (m)	35	35	45	50
BFA (°)	75	65	65	55
Catch Bench (m)	7.5	7.5	8	8


MODELO GEOTECNICO – FLAC/SLOPE v8.1

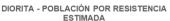
FACTOR DE DISTURBANCIA

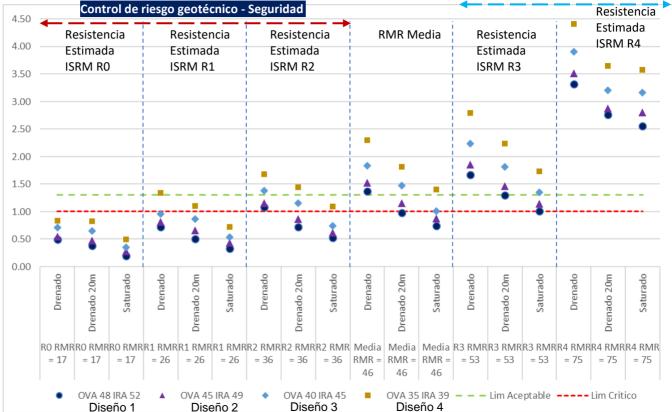
D = 1; franja de 20m.

D = 0.7; franja de 30m.

D = 0; > a 50m.

RESULTADOS DE FACTOR DE SEGURIDAD - RMR





Oportunidad Negocio

RESULTADOS DE FACTOR DE SEGURIDAD

Conclusiones y Recomendaciones:

- 1. La aplicación de la resistencia estimada en la caracterización geomecánica permite determinar que el 39% de la población de la base de datos geomecánica corresponde a macizos rocosos alterados, un 55% de la población corresponde a macizos rocoso de regular calidad y finalmente el 6% de la población corresponde a macizos rocoso de buena calidad.
- Los análisis estadísticos para definir las unidades geotécnicas muestran que los cruces del RMR y el criterio de resistencia estimada del ISRM para cada unidad litológica, ha permitido obtener una mejor diferenciación de los macizos rocosos alterados.
- 3. El análisis de estabilidad de los macizos rocosos alterados obtuvo que un 54% de los 72 modelos geotécnicos evaluados no cumple con el criterio de aceptabilidad, de los cuales, varios corresponden a los diseños 1 y 2 y condiciones de agua saturados.
- 4. El porcentaje de los factores de seguridad que cumplen con el criterio de aceptabilidad para el diseño 4 es de 67%, para el diseño 3 es de 50 %, finalmente para los diseños 2 y 1 es de 33%.
- De acuerdo a los resultados obtenidos se recomienda incluir el criterio de resistencia estimada ISRM 1981 en el procedimiento de logueo y mapeo geomecánico de las investigaciones geotecnias, estas investigaciones deben de realizarse en forma continua para validar la estabilidad los diseños mineros de fases, budget y por año.

Nosotros los Profesionales de la Industria Minera:

Aplicando los estándares y políticas de gobernanza en armonía con el uso de tecnología e innovación.

Tenemos que asegurar la continuidad del negocio minero, cumplimiento de planes, priorizando la...

SEGURIDAD DE LAS PERSONAS Y EQUIPOS.

CONSTRUYENDO JUNTOS UN PERÚ MEJOR

MINERIA 4.0 GESTION DE RIESGOS GEOTECNICOS E HIDROGELOGICOS